机器学习和模式识别有什么区别?看教材,发现它们的算法都差不多一样啊。。。
的有关信息介绍如下:一、方式不同
1、机器学习:是通过计算机用数学技术方法来研究模式的自动处理和判读。
2、模式识别:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
二、研究过程不同
1、机器学习:学习是一项复杂的智能活动,学习过程与推理过程是紧密相连的,按照学习中使用推理的多少,机器学习所采用的策略大体上可分为4种——机械学习、通过传授学习、类比学习和通过事例学习。
2、模式识别:指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
三、应用前景不同
1、机器学习:继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。
对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展 。
2、模式识别:一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容。
参考资料来源:百度百科-模式识别
参考资料来源:百度百科-机器学习