拉格朗日
的有关信息介绍如下:约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736~1813)全名为约瑟夫·路易斯·拉格朗日,法国著名数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。拉格朗日在数学、力学和天文学三个学科中都有重大历史性贡献,但他主要是数学家,研究力学和天文学的目的是表明数学分析的威力。全部著作、论文、学术报告记录、学术通讯超过500篇。拉格朗日的学术生涯主要在18世纪后半期。当对数学、物理学和天文学是自然科学主体。数学的主流是由微积分发展起来的数学分析,以欧洲大陆为中心;物理学的主流是力学;天文学的主流是天体力学。数学分析的发展使力学和天体力学深化,而力学和天体力学的课题又成为数学分析发展的动力。当时的自然科学代表人物都在此三个学科做出了历史性重大贡献。下面就拉格朗日的主要贡献分别评述。数学数学分析的开拓者牛顿和莱布尼兹以后的欧洲数学分裂为两派。英国仍坚持牛顿在《自然哲学中的数学原理》中的几何方法,进展缓慢;欧洲大陆则按莱布尼兹创立的分析方法(当时包括代数方法),进展很快,当时叫分析学(analysis)。拉格朗日是仅次于欧拉的最大开拓者,在18世纪创立的主要分支中都有开拓性贡献。变分法这是拉格朗日最早研究的领域,以欧拉的思路和结果为依据,但从纯分析方法出发,得到更完善的结果。他的第一篇论文“极大和极小的方法研究”(Recherches sur la méthode demaximis et minimies)[2]是他研究变分法的序幕; 1760年发表的“关于确定不定积分式的极大极小的一种新方法”(Essai d'unenouvelle méthode pour déterminer les maxima et les minima desformules integrales indéfinies)[3]是用分析方法建立变分法的代表作。发表前写信给欧拉时,称此文中的方法为“变分方法”(themethod of variation)。欧拉肯定了,并在他自己的论文中正式将此方法命名为“变分法”(the calculus of variation)。变分法这个分支才真正建立起来。拉格朗日方法是对积分进行极值化,函数y=y(x)待定。他不像欧拉和前人用改变极大或极小化曲线的个别坐标的办法,而是引进通过端点(x1,y1),(x2,y2)的新曲线y(x)+δy(x),δy(x)叫曲线y(x)的变分。J相应的增量△J按δy,δy′展开的一、二阶项叫一次变分δJ和二次变分δ2J。他用分析方法证明了δJ为零的必要条件就是欧拉方程他达继续讨论了端点变动时的情况以及两个自变量的重积分的情况,使这个分支继续发展。1770年以后,拉格朗日达研究了被积函数f包含高阶导数的单重和多重积分时斗陵的情况,已发展成为变分法的标准内容。微分方程早在都灵时期,拉格朗日就对变系数常微分方程研究做出重大成果。他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程的伴随方程,就是原方程的齐次方程。他还把欧拉关于常系数齐次方程的结果推广到变系数情况,证明了变系数齐次方程的通解可用一些独立特解乘上任意常数相加而成;而且在知道方程的m个特解后,可以把方程降低m价。在柏林时期,他对常微分方程的奇解和特解做出历史性贡献,在1774年完成的“关于微分方程特解的研究”(Sur les intégralesparticulieres des equations différentielles)[22]中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线。当然,他的奇解理论还不完善,现代奇解理论的形式是由G.达布(Darboux)等人完成的。常微分方程组的研究在当时结合天棚罩体力学中的课题进行。拉格朗日在1772年完成的“论三体问题”(Essai sur le problémedes trois corps)[8]中,找出了三体运动的常微分方程组链销闹的五个特解:三个是三体共线情况;两个是三体保持等边三角形;在天体力学中称为拉格朗日平动解。他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立。拉格朗日是一阶偏微分方程理论的建立者,他在1772年完成的。“关于一阶偏微分方程的积分”(Sur l'integration des équationau differences partielles du premier order)[21]和1785年完成的“一阶线性偏微分方程的一般积分方法”(Méthode génèrale pourintégrer les equations partielles du premier order lorsque cesdifferences ne sont que linèaires)[23]中,系统地完成了一阶偏微分方程的理论和解法。他首先提出了一阶非线性偏微分方程的解分类为完全解、奇解、通积分等,并给出它们之间的关系。后来又进一步证明了解线性方程Pp+Qq=R(P,Q,R为x,y,z的函数)(5)与解等价,而解(6)式又与解常微分方程组等价。(5)式至今仍称为拉格朗日方程。有趣的是,由上面已可看出,一阶非线性偏微分方程,可以化为解常微分方程组。但拉格朗日自己却不明确,他在1785年解一个特殊的一阶偏微分方程时,还说不能用这种方法,可能他忘记了自己在1772年的结果。现代也有时称此方法为拉格朗日方法,又称为柯西(Cauchy)的特征方法。因拉格朗日只讨论两个自变量情况,在推广到n个自变量时遇到困难,而后来由柯西在1819年克服。方程论18世纪的代数学从属于分析,方程论是其中的活跃领域。拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上。他在代数方程解法中有历史性贡献。在长篇论文“关于方程的代数解法的思考”(Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数方法解出的原因。三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值;四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程。拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数)。他继续寻找5次方程的预解函数,希望这个函数是低于5次的方程的解,但没有成功。尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解(有理)函数值不变的置换构成子群,子群的阶是原置换群阶的因子。因而拉格朗日是群论的先驱。他的思想为后来的N.H.阿贝尔(Abel)和E.伽罗瓦(Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题。拉格朗日在1770年还提出一种超越方程的级数解法。设p为方程,这就是后来在天体力学中常用的拉格朗日级数。他自己没有讨论收敛性,后来由柯西求出此级数的收敛范围。数论拉格朗日到柏林初期就开始研究数论,第一篇论文“二阶不定问题的解”(Sur la solution des problémès in détèrminésdu seconde degrés)[14]和送交都灵《论丛》的“一个算术问题的解”(Solution d'un problème d'arithmetique)[15]中,讨论了欧拉多年从事的费马(Fermat)方程x2-Ay2=1(x,y,A为整数),(9)不定问题解的新方法”(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)[16]中得到更一般的费马方程 (B也为整数)(10)的解。还讨论了更广泛的二元二次整系数方程 ,(11)并解决了整数解问题。拉格朗日还在1772年的“一个算术定理的证明”(De monstration d'un théorème d'arthmétique,《文集》Ⅲ,pp.189—201)中,把欧拉40多年没有解决的费马另一猜想“一个正整数能表示为最多四个平方数的和”证明出来。在1773年发表的“质数的一个新定理的证明”(Démonstation d'un theorem nouveau concernant les nombres premiers)[17]中,证明了著名的定理:n是质数的充要条件为(n-1)!+1能被n整除。拉格朗日不仅有大量成果,还在方法上有创新。如在证明(9)式研究”(Recherches d'arithmétiques,《文集》Ⅲ,pp.695—795)中,研究(11)式解时采用的方法和结果,是二次型理论的基本文献。函数和无穷级数同18世纪的其他数学家一样,拉格朗日也认为函数可以展开为无穷级数,而无穷级数则是多项式的推广。他还试图用代数建立微积分的基础。在他的《解析函数论……》(《文集》Ⅸ)中,书名上加的小标题“含有微分学的主要定理,不用无穷小,或正在消失的量,或极限与流数等概念,而归结为代数分析艺术”,表明了他的观点。由于回避了极限和级数收敛性问题,当然就不可能建立真正的级数理论和函数论,但是他们的一些处理方法和结果仍然有用,他们的观点也在发展。拉格朗日就在《解析函数论……》中,第一次得到微分中值定理(书中第六章)f(b)-f(a)=f′(c)(b-a)(a≤c≤b),(12)后面并用它推导出泰勒(Taylor)级数,还给出余项Rn的具体表达式(第二十章)Rn就是著名的拉格朗日余项形式。他还着重指出,泰勒级数不考虑余项是不能用的。虽然他还没有考虑收敛性,甚至各阶导数的存在性,但他强调Rn要趋于零。表明他已注意到收敛问题。他同欧拉、达朗贝尔等在任意函数能否表为三角级数的长期争论,虽未解决,但为以后三角级数理论的建立打下了基础。拉格朗日内插公式最后要提一下他在《师范学校数学基础教程》中,提出了著名的拉格朗日内插公式。直到现在计算机计算大量中点内插时仍在使用。另外在求多元函数相对极大极小及解微分方程中的拉格朗日任意乘子法,至今也在用。其他除了对数学分析在18世纪建立的主要分支有开拓性贡献外,他对严格化问题也开始注意。尽管回避了极限概念,但他仍承认可以在极限基础上建立微积分(《文集》Ⅰ,p.325)。但正是对严格化重视不够,所建立的分支到一定阶段就很难深入。这可能是他晚年研究工作少的原因。他在1781年9月21日给达朗贝尔的信中说:“在我看来,似乎(数学)矿井已挖掘很深了,除非发现新矿脉,否则势必放弃它……”(《文集》XⅢ368)这说出了他和其他同事们的心情。事实表明,19世纪在建立数学分析严格基础后,数学更迅速地发展。分析力学分析力学的创立者他在所著《分析力学》(1788)中,吸收并发展了欧拉、达朗贝尔等人的研究成果,应用数学分析解决质点和质点系(包括刚体、流体)的力学问题。他在总结静力学的各种原理,包括他1764年建立的虚速度原理的基础上提出分析静力学的一般原理,即虚功原理,并同达朗伯原理结合而得到动力学普遍方程。对于有约束的力学系统,他采用适当的变换,引入广义坐标,得到一般的运动方程,即第一类和第二类拉格朗日方程。全书用数学分析形式写成,没有一幅图,故名《分析力学》。书中还给出多自由度系统平衡位置附近微振动的基本理论,但对振动特征方程有重根情况说得不确切,这个错误直到19世纪中叶才分别由K.维尔斯特拉斯(1858)和O.H.索莫夫(1859)作了改正。拉格朗日继欧拉之后研究过理想流体运动方程,并最先提出速度势和流函数的慨念,成为流体无旋运动理论的基础。他在《分析力学》中从动力学普遍方程导出的流体运动方程,着眼于流体质点,描述每个流体质点自始至终的运动过程。这种方法现在称为拉格朗日方法,以区别着眼于空间点的欧拉方法,但实际上这种方法欧拉也应用过。拉格朗日研究过重刚体定点转动并对刚体的惯性椭球是旋转椭球且重心在对称轴上的情况作过详细的分析。这种情况称为重刚体的拉格朗日情况。这一研究在他生前未发表,后经J.比奈整理,收在《分折力学》第二版(1818)的附录中。在此以前,泊松在1811年曾独立得到同样的结果。拉格朗日在1811年还导得弹性薄板的平衡方程。[2] 天体力学天体力学的奠基者天体力学是在牛顿发表万有引力定律(1687)时诞生的,很快成为天文学的主流。它的学科内容和基本理论是在18世纪后期建立的。主要奠基者为欧拉,A.C.克莱罗(Clairaut)、达朗贝尔、拉格朗日和拉普拉斯。最后由拉普拉斯集大成而正式建立经典天体力学。拉格朗日一生的研究工作中,约有一半同天体力学有关,但他主要是数学家,他要把力学作为数学分析的一个分支,而又把天体力学作为力学的一个分支对待。虽然如此,他在天体力学的奠基过程中,仍有重大历史性贡献。首先在建立天体运动方程上,拉格朗日用他在分析力学中的原理和(16),(17)式,建立起各类天体的运动方程。其中特别是根据他在微分方程解法的任意常数变异法,建立了以天体椭圆轨道根数为基本变量的运动方程,仍称作拉格朗日行星运动方程,并在广泛应用,此方程对摄动理论的建立和完善起了重大作用,方程在1780年获巴黎科学院奖的论文“彗星在行星作用下的摄动理论研究”(Recherches sur la théorie des perturbations queles comètes peuvent éprouver par l'action des planètes)[13]中给出,得到达朗贝尔和拉普拉斯的高度评价。另外在一篇有关三体问题的获奖文章中[8],把三体问题的运动方程组第一次降到七阶。在天体运动方程解法中,拉格朗日的重大历史性贡献是发现三体问题运动方程的五个特解[8],即拉格朗日平动解。其中两个解是三体围绕质量中心作椭圆运动过程中,永远保持等边三角形。他的这个理论结果在100多年后得到证实。1907年2月22日,德国海德堡天文台发现了一颗小行星[后来命名为希腊神话中的大力士阿基里斯(Achilles),编号588],它的位置正好与太阳和木星形成等边三角形。到1970年前,已发现15颗这样的小行星,都以希腊神话中特洛伊(Troy)战争中将帅们的名字命名。有9 颗位于木星轨道上前面60°处的拉格朗日特解附近,名为希腊人(Greek)群;有6颗位于木星轨道上后面60°处的解附近,名为脱罗央(Trojan)群。1970年以后又继续发现40多颗小行星位于此两群内,其中我国紫金山天文台发现四颗,但尚未命名。至于为什么在特解附近仍有小行星,是因为这两个特解是稳定的。1961年又在月球轨道前后发现与地月组成等边三角形解处聚集的流星物质,是拉格朗日特解的又一证明。至今尚未找到肯定在三个拉格朗日共线群(三体共线情况)处附近的天体,因为这三个特解不稳定。另外,拉格朗日在一阶摄动理论中也有重要贡献,提出了计算长期摄动方法(《文集》Ⅴ,pp.125—414),并与拉普拉斯一起提出了在一阶摄动下的太阳系稳定性定理(参见《世界著名科学家传记·天文学家Ⅰ》中“拉普拉斯”条)。此外,拉格朗日级数(8)式在摄动理论中有广泛应用。在具体天体的运动研究中,拉格朗日也有大量重要贡献,其中大部分是参加巴黎科学院征奖的课题。他的月球运动理论研究论文多次获奖。1763年完成的“月球天平动研究”(Recherches sur laLibration de la lune)[6]获1764年度奖,此文较好地解释了月球自转和公转的角速度差异,但对月球赤道和轨道面的转动规律解释得不够好。后来在1780年完成的论文解决得更好(参见《文集》Ⅴ,pp.5—123)。获1772年度奖的就是著名的三体问题论文[8],也是针对月球运动研究写出的。获1774年度奖的论文为“关于月球运动的长期差”(Sur l’equation séculaire de la lune)[9],其中第一次讨论了地球形状和所有大行星对月球的摄动。关于行星和彗星运动的论文也有两次获奖。1776年度获奖的是他在1775年完成的三篇论文[10,11,12,]其中讨论了行星轨道交点和倾角的长期变化对彗星运动的影响。1780年度的获奖论文就是提出著名的拉格朗日行星运动方程的那篇[13]。获1766年度奖的论文是“木星的卫星运动的偏差研究……”(Recherches sur les inégualités des satellites de Jupiter…)[7],其中第一次讨论了太阳引力对木星的四个卫星运动的影响,结果比达朗贝尔的更好。拉格朗日从事的天体力学课题还有很多,如在柏林时期的前半部分,还研究了用三个时刻的观测资料计算彗星轨道的方法(《文集》Ⅳ,pp.439—532),所得结果成为轨道计算的基础。另外他还得到了一种力学模型——两个不动中心问题的解,这是欧拉已讨论过的,又称为欧拉问题。是拉格朗日推广到存在离心力的情况,故后来又称为拉格朗日问题(《文集》Ⅱ,pp.67—121)。这些模型仍在应用。有人用作人造卫星运动的近似力学模型。此外,他在《分析力学》中给出的流体静力学的结果,后来成为讨论天体形状理论的基础。总的看来,拉格朗日在天体力学的五个奠基者中,所做的历史性贡献仅次于拉普拉斯。他创立的“分析力学”对以后天体力学的发展有深远的影响。