三角函数在生活中的应用
的有关信息介绍如下:1、比如直角弯管处的接口,如果用两张铁皮制成圆管,并用两棵来垂直相接,那么铁皮的接口处的切线就是它的一部分,只有这样拼接厚才能保证是垂直相接的。
2、三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。
3、解决物理中的力学问题时很重要,主要在于力与力之间的转换,并列出平衡方程。
4、利用三角函数,根据地上影子的长度,可以求出大树、旗杆等不便测量的物体的高度。
扩展资料
三角函数的起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
参考资料来源:百度百科-三角函数
参考资料来源:百度百科-正弦三角函数