初3数学题3题
的有关信息介绍如下:1(1)将A(-1,0),B(3,0),C(0,-3)分别代入y=ax^2+bx+c中,得:y=x^2-2x-3 ,顶点(1,-4)(2)由切线长定理可知:EA=ED,∠AEM=∠DEM ∴△EAM≌△EDM 设 四边形EAMD的面积为S,三角形EAM的面积为S1,则S=2S1=4√3 ∴S1=2 √3设E(-1,b),则S1=1/2*AM*EA=b ∴E(-1,2 √3)由E(-1,2 √3),M(1,0),得直线ME:y=-√3x+√3 设直线AD:y=kx+b,则k= √3/3,代入A(-1,0),得直线AD:y=√3/3*(x+1),与圆方程:(x-1) ^2+y^2=4联立,解得交点D(2,√3),∴直线PE=DE,方程为:y=-√3/3(x-5)2(3)设E(-1,b),N(x,y),四边形EAMD的面积为S,三角形ADN的面积为S1,三角形AMN的面积为S2,则S=2*1/2*MA*AE=2b=S1,S2=1/2S1=1/2*AM*y,∵S=S1,AM=2,∴y=-b,x=1±√(4-b^2),∴D(1+√(4-b^2),b),N(1-√(4-b^2),-b) ,∴ED是平行x轴、且与圆相切。,∴b=2 ,E(-1,2),D(1,2),N(1,-2),设P(x,2),代入抛物线方程:y=x^2-2x-3 得P(1+√6,2)或(1-√6,2)2.(1)将D(2,0),C(1,-3)代入y=ax^2+C,得:y=x^2-4(2)连接BD交y轴于M1,由B(-1,-3)D(2,0)得BD:y=x-2,∴M1(0,-2)∵M1A+M1B=M1D+M1B=BD在y轴上另选一点M,则MA+MB=MD+MB>BD,∴M1(0,-2)为所求(3)设P(x,y),S△PAD=1/2*AD*∣y∣=2*∣y∣, S△ABM=(1+2)*3/2-1/2*2*2-1/2*1*1=2∵S△PAD=4S△ABM ∴∣y∣=4 y=±4 ∵极值点为(0,-3)∴y=4 x=±2√2∴P(2√2,4)或(-2√2,4)3(1)∵A(1,0),B(0,3) ∴AB:y=-3x+3(2)∵AB=3∴C(-2,3),将A,B,C分别代入y=ax^2+bx+c中,得y=-x^2-2x+3,顶点E(-1,4)(3)直线EF:y=4,G(3,0),GH:y=-3x+9∴H(5/3,4)设P(x,y),则S△PAG=1/2*AG*∣y∣=∣y∣;S△PEH=1/2*EH*(4-y)=4/3*(4-y)∵S△PAG=3/4S△PEH=-1±√2∴y=2 代入抛物线议程方程,得x=-1±√2∴P为(-1+√2,2)或(-1-√2,2)